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ABSTRACT

The use of finite element (FE) analysis in the simulation of physical phenomena over the human body has necessitated
the construction of meshes from images. Despite the availability of several tools for generating meshes for FE-based
applications, most cannot deal directly with the raw pixel-wise representation of image data. Additionally, some are
optimized for the construction of much simpler shapes than those encountered within the human body. In this work,
we introduce a new algorithm to obtain strictly convex quadrilateral meshes of bounded size from triangulations
of polygonal regions with or without polygonal holes. We present an approach to construct quadrilateral meshes
from segmented images using the aforementioned algorithm, and a quantitative analysis of the quality of the meshes
generated by our algorithm with respect to the performance of a FE-based image registration method that takes

image meshes as input.
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1. INTRODUCTION

Finite element analysis (FEA) is a powerful tool for
numerically solving differential equations of varia-
tional problems that arise during structural modeling
in engineering and the applied sciences. An essential
prerequisite for the use of FEA is the availability of
a mesh over the problem domain. If the problem do-
main is a subset of the Euclidean plane, triangular or
quadrilateral meshes are typically employed. The ac-
curacy of a problem’s solution and the efficiency with
which it is obtained using a particular FE implemen-
tation are highly dependent on a variety of mesh pa-
rameters, including element number and shape, and
mesh regularity, directionality and grading, [1].

Triangular meshes have been extensively investigated
by the meshing community, and their theoretical prop-
erties are now well understood. Algorithms for gen-
erating provably good triangular meshes of polygo-
nal domains have been proposed, [2]. On the other

hand, the generation of good quadrilateral meshes is
not as well understood. A few algorithms exist to gen-
erate quadrilateral meshes of bounded size, [3, 4, 5, 6],
bounded maximum angle, [4], and controlled den-
sity and directionality, [7, 8], for polygonal domains.
However, there are no known algorithms to generate
quadrilateral meshes of arbitrarily complex polygonal
domains that are provably guaranteed to simultane-
ously meet several quality criteria. Yet good qual-
ity quadrilateral meshes may be more desirable for
certain FE-based applications, such as planar stress-
strain analysis, [9].

The use of FE analysis in biomedical research has led
researchers to explore the construction of meshes from
images, [10]. In two dimensions, image data is rep-
resented as a discrete collection of pixels. Although
several algorithms have been proposed for generating
meshes of arbitrary geometric domains, most of them
have been developed and optimized with structural en-
gineering applications in mind. As a result, they are



not directly applicable to discrete data, and they may
not perform very well when presented with geometri-
cally complex shapes such as the ones encountered in
biology.

In this paper we are primarily concerned with the gen-
eration of strictly conver quadrilateral meshes from
images, and the influence of their quality on the accu-
racy and performance of a particular implementation
of a FE-based image registration method. Strictly con-
vex quadrilateral meshes are meshes in which each of
the four angles of every quadrilateral is strictly less
than 180°, and they are the only desirable quadrilat-
eral meshes for FE-based applications.

The main contributions of our work are two-fold.
First, we describe a new algorithm for generating
strictly convex quadrilateral meshes of provably small
size for polygonal domains with or without polygonal
holes. In particular, we show that the interior of a
polygonal region with holes triangulated with ¢ trian-
gles can be converted into a quadrilateral mesh with
at most [3L] + 2 strictly convex quadrilaterals. We
also use this algorithm to show that an arbitrary con-
strained triangulation (i.e., a triangulation in which
some edges, called constraint edges, must be included)
of t triangles can be converted into a constrained
quadrilateral mesh with at most | 2] 4+ 3k quadrilat-
erals, where h is the number of connected components
in the dual graph of the triangulation. These results
improve on previously known bounds on mesh size.
Our algorithm runs in O(t) time and space. Second,
we provide a quantitative comparison of the accuracy
and performance of FE-based image registration when
presented with distinct types of meshes from magnetic
resonance (MR) images of the human brain (including
the ones generated by our aforementioned algorithm).

The remainder of this paper is organized as follows. In
Section 2 we introduce some basic concepts related to
our work and review related work. In Section 3 we de-
scribe the details of our new algorithm for generating
quadrilateral meshes of polygonal domains. In Section
4 we discuss an approach to generate meshes from im-
ages using algorithms for meshing polygonal domains.
In Section 5 we define image registration, briefly de-
scribe the FE-based image registration method used
here, and present the aforementioned comparative and
quantitative analysis. In Section 6 we summarize our
results and discuss future work.

2. BACKGROUND AND RELATED WORK

The problem of generating a quadrilateral mesh of a
polygonal region R is more complex than that of pro-
ducing a triangular mesh. For one thing, if we require
the set of vertices of the mesh to be the set of ver-
tices of R, a quadrilateral mesh may not even exist,

and the problem of deciding whether or not it exists
has been shown to be NP-complete for R with one or
more holes, [11]. In addition, the theoretical proper-
ties to generate good quality quadrilateral meshes are
not as well understood as the ones for producing good
quality triangular meshes. These facts have led several
researchers to adopt an indirect approach to obtaining
quadrilateral meshes: the polygonal domain is first tri-
angulated and then the triangulation is converted into
a quadrilateral mesh, [3, 12, 5, 7, 13, 8]. This approach
relies on the premise that a good quality quadrilateral
mesh could be more easily generated from an existing
triangulation of the problem domain.

Let R be a polygonal region with n vertices and k
polygonal holes, and let 7 be any triangular mesh of
R such that the set of vertices Vx of R is contained
in the set of vertices Vi of 7, Vg C V. From Euler’s
relation, we know that 7 has t = 2m + 2k — 2 —m,, tri-
angles, where m is the number of vertices of 7 and m,
is the number of vertices of 7 on its boundary, with
n < mp < m. A very simple algorithm for converting
such a triangulation into a strictly convex quadrilat-
eral mesh was proposed by de Berg, [3]. His algo-
rithm runs in O(t) time, produces 3t quadrilaterals,
and inserts exactly 5m + 5k — 5 — 2m; extra vertices
inside R. It is simple and fast, but the size of the
output quadrilateral mesh may prevent its practical
use in the presence of large input triangular meshes.
Everett et al., [3], introduced another linear time algo-
rithm to convert triangular meshes into strictly convex
quadrilateral ones that generates at most L%J quadri-
laterals. However, the size of the output quadrilateral
mesh may still be prohibitive in practice. An interest-
ing feature of this algorithm, which is also present in de
Berg’s algorithm, is the preservation of the input mesh
grading. Johnston et al. proposed another indirect
approach-based algorithm that uses several heuristics
to obtain a strictly convex quadrilateral mesh from
a triangulation, [12]. Their algorithm runs in O(t?)
time, and selectively combines adjacent triangles to
obtain quadrilaterals. However, it is not clear from
the description in [12] that the heuristic procedures
are always successful in producing an all-quadrilateral
mesh.

Shimada et al., [7], proposed an algorithm for gen-
erating quadrilateral meshes that takes into account
mesh regularity, directionality and grading as well as
element shape. Their algorithm employs a physically-
based relaxation process, called cell packing, that fills
in the problem domain with squares, whose size and
direction are controlled by user-defined, scalar den-
sity and vector functions. Mesh vertices are placed
at the center of every square and then connected to
generate a triangulation of the entire domain. Fi-
nally, the triangulation is converted into a strictly con-
vex quadrilateral mesh. Later, Viswanath et al., [8],



modified this algorithm by using rectangular cells in-
stead of square cells, which enabled them to gener-
ate anisotropic quadrilateral meshes. Both algorithms
produce nearly regular quadrilateral meshes with well-
shaped elements and precise control over their direc-
tion and size distribution. However, if precise control
of directionality is not critical and the problem domain
has complex geometry, neither algorithm may be very
attractive due to the expense of the cell packing ap-
proach. Furthermore, conversion of a triangular mesh
into a quadrilateral one may leave isolated triangles,
which may cause the algorithm to undergo an extra
subdivision step to obtain an all-quadrilateral mesh.

Owen et al., [13], presented another quadrilateral
meshing algorithm that takes into account direction-
ality and element shape. It converts a triangular mesh
into a strictly convex quadrilateral one using advanc-
ing fronts initially defined by the boundary edges of
the input mesh. Quadrilaterals are generated by com-
bining and transforming triangles as the fronts move
from the boundary to the interior of the input mesh.
Local smoothing and topological clean-up, commonly
performed as post-processing steps, are part of the
conversion process. One limitation of this algorithm is
that directionality cannot be arbitrarily specified as in
[7, 8]. Although the algorithm in [13] and the ones in
[7, 8] do not provide any theoretical bounds on mesh
size nor mesh element shape, they can generate very
good quality quadrilateral meshes in practical appli-
cations.

The algorithms proposed in [3, 12, 13] take a triangular
mesh as input, while the ones in [7, 8] take a polygonal
region as input and build a triangulation for it. Most
of the algorithms for generating triangular meshes, as
well as the algorithms in [7, 8], cannot deal directly
with image data represented by a discrete collection of
pixels. However, using image processing techniques, it
is possible to identify several distinct structures within
an image and then build polygonal approximations for
their boundaries, [14]. By using polygonal approxi-
mations rather than pixel-wise representations, we are
able to employ any algorithm for generating triangu-
lar and quadrilateral meshes of polygonal domains to
separately mesh the polygonal approximation of each
individual structure on the image.

3. THE ALGORITHM

In this section, we present a new algorithm to convert
an arbitrary triangulation, possibly with constrained
edges, into a quadrilateral mesh of bounded size. The
conversion allows unconstrained edges to be deleted,
but does not allow deletion of input points (vertices).
New points, called Steiner points, may be inserted
along with new edges between Steiner points and/or
input points, in order to construct the quadrangula-

tion'. The mesh produced by our algorithm consists of
strictly convex quadrilaterals. First, we show that the
interior of a triangulated polygonal region with holes
can be quadrangulated with at most | % | + 2 quadri-
laterals by inserting at most ¢+2 Steiner points, where
t is the number of triangles. All Steiner points, except
possibly one, lie in the interior of the polygonal region.
Next, we show how to extend this algorithm to con-
vert a constrained triangulation into a strictly convex
quadrangulation satisfying the given constraints. The
resulting number of quadrilaterals is at most | 3£ | +3h,
obtained by using at most ¢+ 2h Steiner points, where
h is the number of connected components in the dual
graph of the triangulation.

3.1 Polygonal Regions with Holes

The idea behind our algorithm is to quadrangulate
a small group of triangles at a time until the input
triangulation is converted into a quadrilateral mesh.
The group of triangles represents the triangulation of
small, simple polygonal regions (the ones with a small
constant, < 7, number of vertices). This triangulation
is converted into a partial or complete quadrangulation
of the polygonal region. By using a spanning tree of
the dual graph of the triangulation and processing it
in a bottom-up fashion, our algorithm systematically
groups triangles together so that no isolated triangles
remain in the resulting decomposition.

Let R and 7 be as defined in Section 2. Let m > n be
the number of vertices of 7 and ¢ the number of trian-
gles of T. The first step of our algorithm is to build a
rooted spanning tree T' of the dual graph G of 7. The
dual graph of T is the graph that contains a node for
every triangle of 7 and an edge between two nodes if
the corresponding triangles share an (unconstrained)
edge. T is built as a breadth-first search (BFS) tree.
The root of T is any node corresponding to a triangle
containing a boundary edge of 7. Note that 7" is a
binary tree. After constructing 7', the algorithm com-
putes the set V; of all nodes of T at level [, for every
l € {0,1,...,d}, where d is the depth of T" and the
root node is the singleton node at level 0. Next, the
algorithm processes the nodes of T one level at a time
in decreasing order of depth, i.e., Vg, Vg_1,...,Vo. Let
par(v) denotes the parent of v € V', sib(v) the sibling
of v, and ele(v) the triangle of 7 corresponding to v.
Note that ele(v) and ele(par(v)) necessarily share an
edge of 7. For each vertex v € Vi, (1 < k < d) we con-
sider the subtree rooted at par(v) or at par(par(v)).
We denote this subtree by T, and its root by r,. Let
G, denote the subgraph of G induced by T,,. We show
that in the original triangulation 7, the subgraph G,

! Throughout this paper, we use the terms “quadrangu-
lation” and “quadrangulate” to mean “quadrilateral mesh”
and “decompose into quadrilaterals”, respectively. We also
use the term “quad” to refer to a quadrilateral.



corresponds to a triangulated polygonal region 7, con-
sisting of 4,5,6, or 7 vertices. This triangulation is
then converted into a partial or complete quadrangu-
lation by adding Steiner points within the boundary
of T,. If the result is a complete quadrangulation of
the domain of 7,, the subtree T, is eliminated from
T. If the quadrangulation is not complete, there will
be only one leftover triangle within the boundary of
Tv. The root node 7, now represents this triangle and
the remaining nodes of T, are eliminated from 7'. The
sets Vi, Vi_1, and Vi_» are updated accordingly?.

The algorithm runs in phases. Each phase of the al-
gorithm examines nodes from the three deepest levels
and eliminates some of them from 7 and from the
appropriate V;. We show that for every two nodes
eliminated from 7' during a given phase, at most three
quadrilaterals are created by using at most two Steiner
points. In other words, we allow the creation of “one
and a half” quadrilaterals per triangle in the pruning
process. Furthermore, at the end of each phase, the
depth of T decreases by at least one. The tree T is
thusly pruned until all nodes are eliminated and the
underlying triangulation 7 is converted into a strictly
convex quadrangulation.

Before describing the details of our algorithm, how-
ever, we discuss two special situations. First, when T},
is a subtree of three nodes containing v, r, = par(v)
and sib(v), and there is a cross-edge between v and
sib(v) in Gy, the triangulated polygonal region 7, has
a point in its interior, as shown in Figure 1. Second,
when processing T),, our algorithm may place a Steiner
point s on the edge e between ele(r,) and ele(par(ry)),
as shown in Figure 2.

T, T, ele(par(v)) A

par(v)  ele(v)

v sib(v) ele(sib(v))

Figure 1: The non-empty triangle A.

In the first situation we eliminate v and sib(v) from 7,
and par(v) now represents the non-empty triangle A
with its interior point. Note that if v is at level k, then
the node corresponding to A is a leaf at level k — 1.
In the second situation the element ele(par(ry)) cor-
responds to a degenerate quadrilateral or a degenerate
pentagon (if sib(r,) also adds a Steiner point on the
edge it shares with ele(par(ry))) rather than a trian-
gle. We have the following important observations:

2This general idea of pruning the dual tree was also
used in [5] to convert triangulations into quadrangulations
consisting of quads that are not necessarily convex.

Observation 3.1.1. Since T, gets eliminated from T
when the Steiner point is placed on edge e, degenerate
pentagons are leaves of T, and degenerate quadrilat-
erals are either leaves or internal nodes of degree 2.
Furthermore, if v is at level k, the nodes correspond-
ing to these degenerate elements are at level kK — 2 or
level k — 3 (refer to cases 3d, and jc(ii) in the algo-
rithm description,).

ele(par(ry)) ele(par(ry))
A
) ‘ R )o 52
s s O S1 - O
S1
(a) (b)

Figure 2: (a) Degenerate quadrilateral. (b) Degen-
erate pentagon.

Observation 3.1.2. In all cases when such degener-
ate elements are created, the number of nodes in T, is
odd. Since we are allowed “one and a half” quadrilat-
erals per node but only create whole numbers of quadri-
laterals, this implies that we have a “credit” of at least
“half” a quadrilateral for every Steiner point s on the
boundary of a degenerate element.

Observation 3.1.3. Since all quadrilaterals in the
quadrangulation of the domain of T, are strictly con-
vez, there must be an edge of the quadrangulation in-
cident on s and lying outside ele(par(ry)), as shown
in Figure 2. We can slightly perturb s along this edge
without destroying the strict converity of the quadri-
laterals.

We now describe the steps involved in each phase of
the algorithm. During the course of the description,
we refer to various lemmas pertaining to quadrangu-
lations of small polygonal regions, which are stated
formally later in Section 3.3. Let 1 < [ < d be the cur-
rent deepest level of T. We first eliminate all leaves
v of T such that ele(v) is a degenerate quadrilateral,
degenerate pentagon, or a non-empty triangle. Note
that the first two types of leaves will be at levels I,1—1,
or [ — 2, and the third type will all be at level [.

Step 1. Eliminate allv € ViUV;_1 UVi_s such that v
is a leaf and ele(v) is a degenerate quadrilateral. Let
s be the Steiner point of ele(v), and let es be the edge
of the quadrangulation (constructed thus far) incident
on s. We convert ele(v) into a strictly convex quadri-
lateral by perturbing s along the edge es, as shown in
Figure 2a, and then we remove v from 7.

Step 2. Eliminate all v € ViU V;_1 U Vi_2 such that
ele(v) is a degenerate pentagon. Let s1 and s2 be the



two Steiner points of ele(v) and let e be the shared
edge of ele(v) and ele(par(v)). It is straightforward to
convert ele(v) into a strictly convex quadrilateral and
a leftover triangle A as shown in Figure 2b. Now v
represents the leftover triangle, i.e., ele(v) = A. Note
that we have created one convex quadrilateral, but
have not eliminated any nodes from 7. However, from
Observation 3.1.2, we know that each of s; and s» has
a credit of half a quadrilateral. Thus, the number of
quads produced in this case remains within the stated
bounds.

Step 3. Eliminate all v € Vi such that ele(v) is a
non-empty triangle. Let T, be the subtree of T rooted
at par(v). We consider the following cases (refer to
the illustrations in Figure 3 and Figure 4):

3a. par(v) is a node of degree 2, and ele(par(v)) is
a degenerate quadrilateral. Let s be the Steiner
point of ele(par(v). By connecting s to the ver-
tex of ele(par(v)) that is not adjacent to s, we
decompose T, into a triangle A and a quadrilat-
eral with a point in its interior (see Figure 3a).
The latter can be quadrangulated into five convex
quads with three Steiner points in its interior by
Lemma 3.2.2. We then remove v from T. A to-
tal of three nodes (the nodes that gave rise to v)
have been eliminated from 7. Once again, since
s has a credit of half a quadrilateral, the five con-
vex quads created in this step keep us within the
stated bounds. The node par(v) now corresponds
to the triangle A.

3b. par(v) is a node of degree 2, and ele(par(v)) is
a triangle. In this case, the domain of T, is
a quadrilateral and this quadrilateral contains a
vertex of T, in its interior (see Figure 3b) . Again,
by Lemma 3.2.2, the region can be quadrangu-
lated into five convex quads with three Steiner
points in its interior. We then remove v and
par(v) from T. Four nodes have been eliminated
from T'.

par(v) par(v
7?2
ele(v) ele(par(v)) ele(v) ele(par(v)

a (O Degenerate quad
@ Non-empty trlangle

Figure 3: Cases 3a and 3b of Step 3.

3c. par(v) is a node of degree 3, and ele(sib(v)) is
a triangle. If G, = T,, then the domain of T,

is a pentagon and this pentagon contains a ver-
tex of 7, in its interior (see Figure 4a). Then by
Lemma 3.2.4, this region can be decomposed into
at most six convex quads and one triangle A by
using at most four Steiner points in the interior.
Remove v and sib(v) from 7', and let r, now rep-
resent A. If G, contains a cross-edge between
v and sib(v), then ele(v) and ele(sib(v)) form a
quadrilateral with a point inside (see Figure 4a),
which can be decomposed into five convex quadri-
laterals by using three Steiner points. Eliminate
v and sib(v) from 7. Four nodes have been elim-
inated from T in either case.

ele(par(v)) _ ele(sib(v

par(v ;j par(v)

ele(v) ele(par(v ele(v) ele(par(v

v sib(v) ? v sib(v) ?;

ele(sib(v))

(a) @ Non-empty triangle (b)

ele(par v) ele(sib(v

Figure 4: Cases 3c and 3d of Step 3.

3d. par(v) is a node of degree 3, and ele(sib(v)) is
a non-empty triangle. If G, = T,, then the do-
main of 7, is a pentagon and this pentagon con-
tains two vertices of 7, in its interior. If G,
contains a cross-edge between v and sib(v), then
the domain of 7, is a triangle and this trian-
gle contains three vertices of 7, in its interior.
In either case, 7, can be decomposed into two
quadrilaterals, each with a point in its interior as
follows: add a Steiner point on the edge shared
by ele(r,) and ele(par(ry)) and connect it to the
vertex of ele(r,) that is not adjacent to it (see
Figure 4b). By Lemma 3.2.2, each quadrilateral
can be decomposed into five convex quads using
three Steiner points. Remove all nodes of T, from
T. Hence a total of seven nodes were eliminated
and ten convex quadrilaterals were created us-
ing seven Steiner points. In the next phase of
the algorithm, ele(par(r,)) will be a degenerate
quadrilateral or pentagon.

Observation 3.1.4. After steps 1-3 are carried out,
for every node v € ViUV|_y, ele(v) is either a triangle
or a degenerate quadrilateral. In the latter case, v is
a node of degree 2.

Step 4. The last step eliminates all remaining v € V].
From Observation 3.1.4, and the fact that T is a BFS
tree, it follows that the only possible configurations for
T, are those described in the sub-steps below.



4a.

4b.

4c.

ele(v)
par(v) ¢
ele(v) par(v : j ele(sib(v
{8 P sib(v

Eliminate all v € V) such that ele(par(v)) is a
degenerate quadrilateral. Let T, be the subtree
of T rooted at r, = par(v). Perturb the Steiner
point s of ele(r,) along the quadrangulation edge
incident to it. A Steiner point s’ placed in ele(r,)
decomposes the region 7, into two convex quads
and a triangle A adjacent to the shared edge of
ele(ry) and ele(par(ry)) (see Figure 5a). Elimi-
nate v from 7 and let r, now represent the tri-
angle A. The credit of half a quadrilateral on
s keeps the number of convex quads within the
stated bounds.

ele(par(v)) ele(par(v)

ele(par(v

ele(par(v)) ele(v)

(a) Q Degenerate quad (b)

ele(sib(v))

Figure 5: Cases 4a and 4b of Step 4.

Eliminate all v € V; such that par(v) is a node
of degree 3. Again, let T, be the subtree of T
rooted at r, = par(v) and refer to Figure 5b. If
G, contains an edge between the nodes v and
sib(v), then we remove v and sib(v) from T,.
The node par(v) now is the non-empty triangle
corresponding to the boundary of 7,, with the
fourth vertex of 7, in the interior of its domain
(see Figure 1). If there is no cross-edge between
v and sib(v), then by Lemma 3.2.3, the domain
of 7, can be subdivided into two convex quadri-
laterals and one triangle A (adjacent to the edge
shared by ele(ry) and ele(par(ry))) by adding one
Steiner point. Remove v and sib(v) from T'. The
node r, now represents A.

Finally, eliminate all v € V| such that par(v) is
a node of degree 2. Let T, be the subtree of T
rooted at 7, = par(v). If the domain of the tri-
angulated quadrilateral 7, formed by ele(v) and
ele(par(v)) is strictly convex, then we remove v
and par(v) from T'. Otherwise, let T, be the sub-
tree of T rooted at r, = par(par(v)) and con-
sider the following sub-cases (refer to Figure 6,
Figure 7, and Figure 8):

ele(ry) is a degenerate quadrilateral. Note that
G, = T, for this case because T is a BFS tree.
Perturb the Steiner point of ele(r,) along the
quadrangulation edge incident to it so that the

domain of 7, is now a hexagon. By Lemma 3.2.1,
this region can be subdivided into at most four
convex quadrilaterals by using at most three
Steiner points in its interior. Eliminate all the
nodes of T, from T'.

ele(par(v)

ele
ele(par(v
par par ele T”
ele
v ele(v

O Degenerate quad

(a) (b)

Figure 6: Cases i and ii of Step 4c.

ii. 7y s a node of degree 2 and ele(ry) is a trian-

gle. Once again, G, = T, for this case. There-
fore, the domain of 7, is a pentagon. We apply
Lemma 3.2.3, where the shared edge of ele(r.)
and ele(par(ry)) is designated as the “outgoing”
edge. Then, we have two situations. First, the
domain of 7, is subdivided into three convex
quads and one triangle A adjacent to the outgo-
ing edge by using two Steiner points. Second, the
domain of 7, is subdivided into four convex quads
by using three Steiner points, one of which lies
on the outgoing edge. In the first situation, we
remove v and par(v) from T, and let 7, now rep-
resent A. In the second situation, we remove all
nodes of T, from 7', and ele(par(ry)) becomes a
degenerate quad or a pentagon in the next phase
of the algorithm.

E ele(ry) 3 ele(ry) l ele(ry)
ele (v) ele(v) ele(v)

Gv =T,

Gy £T,

Figure 7: Case iii of Step 4c (dashed edges are
cross-edges).

iii. 7y 15 a node of degree 8, and sib(par(v)) is a leaf.

If G, = T,, the domain of 7, is a hexagon, to
which we apply Lemma 3.2.1. If G, # T,, then
the domain of 7, is a quadrilateral that contains
a vertex of 7, in its interior, to which we apply
Lemma 3.2.2. In either case, at most five convex
quadrilaterals are created by using at most three



Steiner points in the interior of 7,. Remove all
nodes of T, from T'.

iv. 7y 1s a node of degree 3, and sib(par(v)) is a
node of degree 2. The different possibilities for
the graph G, are derived from the fact that T
is a BFS tree. All cases are illustrated in Fig-
ure 8: Cases (a)—(c) correspond to a pentagon
with a point in its interior, to which we ap-
ply Lemma 3.2.4. In cases (d)-(e), the non-root
nodes of T, (v, vi, v2 and vs in the figure) cor-
respond to a quadrilateral with a point inside,
to which we apply Lemma 3.2.2. Finally, case
(f) corresponds to a septagon, to which we ap-
ply Lemma 3.2.5. In all cases, we remove all
four non-root nodes of 7, and at most six con-
vex quadrilaterals are created by adding at most
four Steiner points.

After all d — 2 phases have been carried out, the sets
Vi, Vi—1,..., V> are all empty, and the sets Vo and V;
are possibly non-empty. If V5 and Vi are non-empty,
apply Steps 1-3 and Step 4a to Vi and then Vj. It
is easy to show that now the only remaining nodes
in T are either the singleton root node, or the root
node and one child, or the root node and two chil-
dren. The domain of 7 is thus either a triangle, a
quadrilateral, a pentagon, or a triangle with an inte-
rior point. In the case of the quadrilateral, four inter-
nal Steiner points decompose it into five convex quads.
In the other cases, we add one Steiner point outside
the boundary of R (this is unavoidable because the
boundary of R has odd parity) to obtain one, three,
or five convex quads using zero, one, or three internal
Steiner points, respectively.

:

Figure 8: G, for case iv of Step 4c (dashed edges
are cross-edges).

Theorem 3.1.1. Given a polygonal region R, possibly
with one or more polygonal holes, and a triangulation
T of R with t triangles, the algorithm described before
converts T into a strictly conver quadrangulation of R
with at most | 3| + 2 quadrilaterals by using at most
t + 2 Steiner points, all except one of which lie within
the boundary of R. The algorithm runs in O(t) time
and space.

Proof. In each step of phase [ of the algorithm de-
scribed above, at most k Steiner points are added for

every k nodes eliminated from T'. At the very last step,
either one more Steiner point is added just outside
the boundary of R, or two more are added within R.
Therefore, the total number of Steiner points added is
at most ¢ + 2. Furthermore, for every two nodes elim-
inated from 7, at most three strictly convex quadri-
laterals are constructed. At the very last step, two
additional quads may be constructed. This gives us
the upper bound of |2 | + 2 for the number of strictly
convex quadrilaterals in the quadrangulation. At the
end of phase [ of the algorithm, all nodes of the set V;
have been eliminated, and hence the depth of the tree
decreases by at least one. Furthermore, phase [ of the
algorithm examines only the nodes at levels [, — 1,
and [ — 2. In other words, each node in 7" gets exam-
ined only a constant number of times. Therefore, the
algorithm runs in O(¢) time. The space requirements
are clearly O(t) as well. O

3.2 Small Polygonal Regions

In this section, we list several lemmas pertaining to
strictly convex quadrangulations of small and simple
polygonal regions, i.e., regions consisting of 4, 5, 6, or 7
boundary edges and no holes. As seen in the previous
section, these facts are necessary to prove the correct-
ness of our algorithm. We merely state the lemmas
here. Proofs are omitted due to lack of space (see de-
tails in [6] and [15]).

Lemma 3.2.1. [6] A hezagon can be decomposed into
at most four conver quadrilaterals by using at most
three Steiner points in its interior.

Lemma 3.2.2. [6] A quadrilateral with a point in its
interior can be decomposed into at most five convex
quadrilaterals by using at most three Steiner points in
its interior.

For polygonal regions bounded by an odd number of
edges, one of the boundary edges is designated as an
outgoing edge. (The outgoing edge is simply the trian-
gulation edge between the root of subtree T, and its
parent in the algorithm described in the previous sec-
tion.) When quadrangulating this region, all Steiner
points except one are placed in the interior of the poly-
gon, and one Steiner point may be placed on the out-
going edge. The resulting quadrangulation consists of
strictly convex quadrilaterals, possibly with one left-
over triangle adjacent to the outgoing edge. The fol-
lowing lemmas state the relevant facts formally:

Definition 3.2.1. Let P be a pentagon and let e be
an edge of P. Given a triangulation T of P such that
Vr = Vp, T necessarily consists of three triangles, two
of which are ears of T. Each of these ears shares two
vertices and a distinct diagonal of T with the third
triangle, denoted by center triangle. Furthermore, the



edge e is said to be of type 1 with respect to T if it
is the edge of P shared with the center triangle of T .
If e is not of type 1 and e is adjacent to the type 1
edge, it is said to be of type 2 with respect to T. Ife
is neither of type 1 nor of type 2, then e is incident to
the common vertex of all triangles of T and is said to
be of type 3.

Lemma 3.2.3. [15] Let P be a pentagon and let e be
the outgoing edge of P. Then, given any triangulation
T of P such that V- = Vp, we have the following:
(1) If e is of type 1 with respect to T, the pentagon P
can be decomposed into two conver quadrilaterals and
one triangle adjacent to e by adding one Steiner point
inside P. (2) If e is of type 2 with respect to T, then P
can be decomposed into three conver quadrilaterals and
one triangle adjacent to e by adding two Steiner points
inside P. (3) If e is of type 8 with respect to T then,
P can be decomposed into four convex quadrilaterals
by adding two Steiner points inside P and one more
on the edge e.

Lemma 3.2.4. [15] Let P be a pentagon with a point
in its interior and let e be the outgoing edge of P.
Then, the pentagon P can be decomposed into at most
siz conver quadrilaterals and one triangle adjacent to
e by adding at most four Steiner points inside P.

In our algorithm, a polygonal region S bounded by
seven edges is obtained when the subtree T}, is a path
of five nodes, with the middle node as the root of T,.
This is the only case that results in a septagon, and
the outgoing edge is always the edge of S belonging to
the element corresponding to the middle node of T,.

Lemma 3.2.5. [15] Let S be a septagon such that S
admits a triangulation T, with V- = Vs, whose dual
graph is a path. Let the edge of S contained in the
middle triangle of T be the outgoing edge e. Then, S
can be decomposed into six conver quadrilaterals and
one triangle adjacent to e by adding at four Steiner
points inside S.

3.3 Constrained Quadrilateral Meshes

Our algorithm for generating quadrilateral meshes of
polygonal regions with holes can be extended in a
straightforward manner to work with arbitrary con-
strained triangulations. The ability to handle such
input is critical for our image registration application
described in Section 5, as we need to construct quadri-
lateral meshes of polygonal approximations of brain
structures that are modeled as nested polygonal re-
gions (see Figure 10). Both the interior and the ex-
terior of each polygonal region (except the exterior of
the outermost one) is to be meshed and it is important
to respect the boundaries of the polygonal regions in
the quadrangulation.

Let 7 be a given constrained triangulation with ¢
triangles. Let G be the dual graph of 7 (G does
not include a dual edge when the corresponding tri-
angulation edge is a constraint), and let h be the
number of connected components of G. In order
to construct a convex quadrangulation that satisfies
the given constraints, we build the spanning forest
T ={T\,T>,...,Th} of G and run our algorithm on
each T;. The root node of each T} represents a triangle
adjacent to a boundary (constraint) edge e; of the un-
derlying triangulation 7;. Let ¢; denote the number of
nodes in 7T;. From the algorithm and Theorem 3.1.1,
it follows that 7; can be quadrangulated with at most
|24 | + 2 quadrilaterals using at most ¢; + 2 Steiner
points. Note that if ¢; is odd, one Steiner point is
placed on the constraint e; and the adjacent triangles
are modified accordingly, so that the number of nodes
for every T; becomes even. In either case, we show
that the total number of strictly convex quads in the
constrained quadrangulation is at most [ 3| + 3h, ob-
tained by using at most ¢ + 2h Steiner points.

3.4 Implementation and Results

We implemented our algorithm using C++ and the
open source Computational Geometry and Algorithms
Library (CGAL) class library (http://www.cgal.org).
Figure 9a shows a triangular mesh with 3346 trian-
gles generated by Triangle, which is a constrained De-
launay triangular mesh generator with quality con-
straints, [16]. Figure 9b shows a quadrilateral mesh
with 1762 quads obtained from the mesh in Figure
9a using our algorithm. This reduction in mesh size
of about 60% has been observed in almost all our
test cases. Figure 9b highlights the input triangu-
lar mesh grading preservation that is also present in
[3, 13]. Our algorithm does not provide any theoretical
guarantee on mesh element shape, and it can indeed
generate meshes with a few poorly-shaped quadrilat-
erals. We can further improve mesh quality by us-
ing post-processing methods at the expense of runtime
and mesh size. Figure 9c illustrates the result of post-
processing the mesh in Figure 9b using angle-based
smoothing, [17], and topological clean-up, [18].

4. MESHES FROM IMAGES

Polygonal approximations of structures in a two-
dimensional image can be obtained by performing two
operations on the input image: image segmentation
and boundary approximation. Image segmentation is
the process of subdividing an image into its constituent
parts, [14]. This operation makes it possible to extract
the collection of all pixels corresponding to a particular
structure of an image. The boundary approximation
operation takes as input the collection of pixels of a
particular segmented structure, searches for the pixels



on the structure boundary, extracts the closed polyg-
onal curves (polygons) defined by the exterior vertices
and edges of the boundary pixels, and then simpli-
fies these polygonal curves. The simplification can be
carried out by using a polygonal curve simplification
algorithm, [19].
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Figure 9: (a) Triangular mesh of “Lake Superior”.
(b) Quadrilateral mesh of Lake Superior. (c) Mesh
in (a) after post-processing.

The result of applying segmentation and boundary ap-
proximation operations to an image is a hierarchy of
(nested) polygons, or contours, such that the contours
of any two consecutive hierarchy levels define one or
more polygonal regions. Each polygonal region is an
approximation of a distinct segmented structure of the
image, so any meshing algorithm for polygonal regions
can be used to generate a mesh of the entire image
from its set of contours. Figure 10 shows the set of
contours obtained from a two-dimensional slice of a
segmented human brain image volume.

Figure 10: Contours of a human brain image.

5. AN APPLICATION

Image registration is the process of finding a spatial
alignment between two images so that corresponding
features can easily be related, [20]. This spatial align-
ment is usually achieved by a combination of rigid and
non-rigid image transformations. The former is used
to globally align two images and it accounts for trans-
lational and rotational differences, while the latter is
used to maximize the regional similarity between cor-
responding structures. Image registration has become
a very important tool for image analysis, understand-
ing and visualization in medical applications.

Broit, [21], developed a method for non-rigid image
registration in which one image, modeled as an elas-
tic continuum, is warped to match the appearance
of another. Later, Gee and Bajcsy, [22], proposed a
variational and probabilistic framework to numerically
compute a finite element-based solution for the regis-
tration problem using Broit’s method. An implemen-
tation of Gee and Bajcsy’s framework is available in
the open source Insight Segmentation and Registration
Toolkit (ITK), http://www.itk.org, sponsored by the
National Library of Medicine (NLM). This implemen-
tation takes as input a pair (A, B) of images and a
mesh for image B, and outputs an image A’ resulting
from warping image A to match the appearance of im-
age B. Figure 11 illustrates the FE-based image regis-
tration method implemented in ITK. Here, we adopt
the ITK implementation of Gee and Bajcsy’s FE-based
image registration framework to evaluate the quality
of quadrilateral meshes produced by our algorithm in
Section 3, as well as the quality of their triangular
counterparts and regular rectangular grids automati-
cally generated by the registration software.

We set up an experiment for registering a pair (A, B)
of 2D images of the human brain in which A was a
coronal MR image with dimensions equal to 256 x 256
pixels and B was the result of applying a cubic polyno-



mial warp to A. Next, we used the approach in Section
4 to compute a polygonal approximation for the struc-
tures of interest in image B, and generated several
triangular and quadrilateral meshes for this polygonal
approximation. We used Triangle, [16], to produce
four triangular meshes whose triangles have minimum
angles of 20°, 25°, 30°, and 33°. Then we produced
quadrilateral meshes from these triangular meshes us-
ing the algorithm in Section 3. Next, we obtained
four more quadrilateral meshes by smoothing and im-
proving the topology of the previous four meshes. We
also used an internal procedure within ITK to generate
four regular grids of 8 x 8, 4 x4, 2 x 2, and 1 x 1-pixel
elements. Table 1 shows the number of elements, ver-
tices, and edges of all meshes used in our experiment.
Meshes 1-4 are triangular meshes with minimum an-
gle 20°, 25°, 30°, and 33°, respectively. Meshes 5-8
are quadrilateral meshes generated from meshes 1-4.
Meshes 9-12 are the result of post-processing meshes
5-8. Meshes 13-16 are rectangular grids of 8 x 8, 4 x 4,
2 x 2, and 1 x 1-pixel elements, respectively.

(c) ()

Figure 11: (a) Source image. (b) Target image and
its associated mesh. (c) Image resulting from warp-
ing image in (a). (d) Subtraction of (c) from image
in (b).

Finally, we registered image A to image B 20 times.
Each registration used the same pair (A, B) of images
and a mesh from Table 1. Meshes 1-4 were used twice
each, and meshes 5-16 were used only once. All tri-
angles and quadrilaterals were 3-noded and 4-noded

linear elements, respectively. For the registrations us-
ing quadrilaterals, four integration points were used
by the FE numerical integration procedure. For the
registrations using triangles, we used 1 and 3 integra-
tion points. All registrations ran for 20 iterations on
a PC with an Intel Pentium IIT processor and 256 MB
of RAM running Windows 98. We evaluated the re-
sults of the registrations by calculating the root-mean
squared (RMS) difference between the intensity val-
ues of the corresponding pixels over the entire domain
of images A" and B. Table 2 summarizes the results
obtained from the 20 registrations.

| Mesh | #Elements | #Vertices | #Edges |

1 2921 1472 4392
2 3549 1790 5338
3 4914 2481 7394
4 8254 4173 12426
5 1645 1657 3301
6 1941 1957 3897
7 2581 2605 5185
8 4318 4364 8681
9 1773 1785 3557
10 2073 2089 4161
11 2747 2771 5517
12 4499 4545 9043
13 1024 1089 2112
14 4096 4225 8320
15 16384 16641 33024
16 65536 66049 131584

Table 1: Size of the meshes 1-16.

Examination of the results in Tables 1 and 2 demon-
strates that the larger the size of a particular type of
mesh, the smaller the associated RMS. In addition,
quadrilateral meshes 5-8 have less than 60% of the
number of elements of their triangular counterparts,
meshes 1-4. The use of post-processing techniques
to obtain meshes 9-12 from meshes 5-8 produced
meshes with approximately 10% more quadrilaterals.
Even so, the number of quadrilaterals in meshes 9-
12 is still less than 61% of the number of triangles
in corresponding meshes 1-4. Despite this reduction
in mesh size, the RMS associated with the quadrilat-
eral meshes and their counterparts are comparable.
The RMS associated with the quadrilateral meshes is
bounded from above and from below by the RMS as-
sociated with their triangular counterparts sampled
with 1 and 3 integration points, respectively. Note
that post-processing techniques in general improved
the quadrilateral meshes. The runtime associated with
the quadrilateral meshes, however, is higher than that
of the triangular counterparts. This is due to the fact
that the procedures to compute the finite element solu-
tion using 4-noded quadrilaterals are more expensive



than the simple ones associated with 3-noded trian-
gles.

| Mesh | Int. Pts. | Runtime (s) | RMS |

1 1 10 17.95
1 3 17 17.25
2 1 12 17.35
2 3 21 16.98
3 1 17 17.20
3 3 30 16.81
4 1 32 16.78
4 3 52 16.62
5 4 21 17.67
6 4 24 17.12
7 4 33 16.93
8 4 59 16.68
9 4 23 17.44
10 4 27 17.47
11 4 35 16.92
12 4 62 16.66
13 4 12 18.56
14 4 46 16.99
15 4 205 16.11
16 4 1001 15.93

Table 2: Summary of the registration results.

Quadrilateral meshes 7 and 11 have about 75% as
many quadrilaterals as the regular rectangular grid 14,
yet both meshes have a smaller RMS. This is an exam-
ple of a case in which mesh regularity and well-shaped
elements alone were not enough to provide a better
result. The registration method is very sensitive along
the boundary of distinct structures (see Figure 11d),
and appropriately graded meshes can provide a better
result. Figure 12 shows triangular mesh 3. Figures 13a
and 13b show the quadrilateral mesh 7 produced from
mesh 3 by the algorithm in Section 3, and quadrilat-
eral mesh 11 that is the smoothed and topologically
improved version of mesh 7, respectively.

6. CONCLUSIONS

We presented an algorithm to convert triangulations
of polygonal regions with or without polygonal holes
into strictly convex quadrangulations. Our algorithm
has a runtime linear in the number of triangles of the
input triangulation, offers better bounds than sim-
ilar algorithms ([3]) that also produce strictly con-
vex quadrilateral meshes of bounded size, and is sim-
pler and faster than algorithms that produce better
quality meshes (in terms of element shape, regular-
ity and directionality control) at the expense of run-
time, [7, 13, 8]. We also evaluated the quality of the
meshes generated by our algorithm, their triangular

counterparts and regular rectangular grids with re-
spect to the performance of a FE-based image reg-
istration method. Our evaluation demonstrated that
our quadrilateral meshes lead to slightly more accu-
rate registrations when compared with those obtained
using rectangular grids of similar size, and also lead
to solutions comparable with the ones obtained using
their denser triangular counterparts.

Future work will focus on the investigation and for-
malization of the relationship between the quality of
the input triangulation and the quality of the corre-
sponding output quadrangulation obtained by our al-
gorithm with respect to quality measures such as an-
gle bounds, etc. We also intend to extend the ex-
periment in Section 5 to include an algorithm that is
known to generate well-shaped quadrilateral meshes,
such as the ones in [7, 13, 8], as well as to investigate
an extension of our meshing algorithm to produce hex-
ahedral meshes between planar cross-sections of image
volumes, a problem directly motivated by applications
in medical imaging.
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